En naviguant sur notre site vous acceptez l'installation et l'utilisation des cookies sur votre ordinateur. En savoir +

Menu Institut Sophia Agrobiotech Inra - 70 ans - Votre avenir est notre culture Logo transparent Univ. Nice Sophia Antipolis Logo transparent CNRS

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs
400 route des chappes
BP 167
0690 Sophia Antipolis Cedex
Tel. : +33(0)4 92 38 64 00
Fax : + 33(0)4 92 38 64 01


Biologie des Populations Introduites 

Logo BPI - Biologie des Populations Introduites
© inra - bpi
L’équipe étudie les conditions d’installation et d’évolution des populations envahissantes d’insectes. Les recherches menées sur les introductions de populations, les invasions qui en découlent et les processus adaptatifs associés sont conduites sous un angle de biologie évolutive. Ces recherches combinent écologie évolutive et comportementale, génétique des populations et dynamique des populations.

Nouvelles Publications               

  • Bourguet, D., and Guillemaud, T. (2016). The hidden and external costs of pesticide use. Sustainable Agriculture Reviews 19: 35-120. Sustainable Agriculture Reviews 19, 35–120.
  • Lucque, G.M., Vayssade, C., Facon, B., Guillemaud, T., Courchamp, F., and Fauvergue, X. (2016). The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere, In press.
  • Pacheco da Silva, V.C., Kaydan, M.B., Germain, J.-F., Malausa, T., and Botton, M. (2016). Three new species of mealybug (Hemiptera, Coccomorpha, Pseudococcidae) on persimmon fruit trees (Diospyros kaki) in southern Brazil. ZooKeys 584, 61–82.
  • Silva, V.C.P. da, Galzer, E.C.W., Malausa, T., Germain, J.F., Kaydan, M.B., and Botton, M. (2016). The Vine Mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) Damaging Vineyards in Brazil. Neotrop Entomol 1–3.
  • Zboralski, A., Vilarelle, M., Colombel, E., Tabone, E., and Vercken, E. (2016). Density-dependent dispersal in biological control agents: a reflexion on the side-effects of mass-rearing conditions. Biocontrol 61, 13–22.
  • Helen E. Roy , Peter M. J. Brown, Tim Adriaens, Nick Berkvens, Isabel Borges, Susana Clusella-Trullas, Richard F. Comont, Patrick De Clercq, Rene Eschen, Arnaud Estoup, Edward W. Evans, Benoit Facon, Mary M. Gardiner, Artur Gil, Audrey A. Grez, Guillemaud, T., Danny Haelewaters, Annette Herz, Alois Honek, Andy G. Howe, Cang Hui, William D. Hutchison, Marc Kenis, Robert L. Koch, Jan Kulfan, Lori Lawson Handley, Lombaert, E., et al. (2016). The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biological Invasions, 18(4), 997-1044.

Résultats récents - en anglais

Invasion routes of the leafminer, Tuta absoluta,

The Lepidopteran pest of tomato, Tuta absoluta, is native to South America and is invasive in the Mediterranean basin. Its routes of invasion were investigated. The genetic variability of samples collected in South America, Europe, Africa and Middle East was analyzed using microsatellite markers to infer precisely the source of the invasive populations and to test the hypothesis of a single versus multiple introductions into the old continents. We used an Approximate Bayesian Analysis (ABC) which provided strong evidence that the origin of the invading populations is unique and is close to or is in Chile, and probably in Central Chile near the town of Talca in the district of Maule.

The highs and lows of dispersal: how connectivity and initial population size jointly shape establishment dynamics in discrete landscapes

Identifying the main factors driving introduced populations to establishment is a major challenge of invasion biology. Due to their small initial size, introduced populations are most vulnerable to extinction because of demographic stochasticity or Allee effects. While an increase in initial population size is known to increase establishment success, much remains to be understood regarding its interplay with connectivity in spatially structured environments. In order to better understand how demographic mechanisms interact at such spatial scale, we developed a stochastic model of population dynamics in discrete space to investigate the effect of connectivity and initial population size on establishment. The predictions derived from the model were then tested using experimental introductions of an insect parasitoid (Trichogramma chilonis) in spatially structured laboratory microcosms. Both theoretical and experimental results demonstrated that the connectivity of the introduction site had 1) a deleterious effect in the first generation when the introduced population was small and 2) a beneficial impact brought about by metapopulation effects in the subsequent generations. Interestingly, populations displayed a weakly pushed invasion pattern promoting early establishment, which was mainly underpinned by dispersal stochasticity and the discrete nature of the landscape. These results shed light on the critical influence of landscape connectivity on establishment dynamics.

Sterile males in a parasitoid wasp with complementary sex determination: from fitness costs to population extinction

Single-locus complementary sex determination (sl-CSD), which occurs in some insects of the order Hymenoptera, imposes a heavy genetic load that can drive small populations to extinction. The core process in these species is the development of individuals homozygous at the sex-determining locus into unfit diploid males. The risk of extinction of populations with sl-CSD is theoretically much higher if diploid males are viable and capable of mating but sterile, because diploid males then decrease the reproductive output of both their parents and the females with which they mate. We measured essential morphological, life-history and behavioral traits of diploid males of the parasitoid wasp Venturia canescens (Hymenoptera: Ichneumonidae), to improve predictions of population dynamics in this species. Diploid males resembled their haploid counterparts in most respects, but their mating success was nevertheless lower than that of normal, haploid males. Furthermore, although diploid males transferred viable sperm during copulation, they sired no daughters: the females with which they mated produced only sons, like virgin females. We developed a simulation model to bridge the gap between individual behavior and population genetics and dynamics. For two alternative hypotheses concerning the fertilization success of diploid sperm, we demonstrate that the mating success of diploid males is a crucial determinant of the probability of extinction.

Development of methods for population analyses of venome variability in parasitoids

Understanding the forces that shape eco-evolutionary patterns often requires linking phenotypes to genotypes, allowing characterization of these patterns at the molecular level. DNA-based markers are less informative in this aim compared to markers associated with gene expression and, more specifically, with protein quantities. The characterization of eco-evolutionary patterns also usually requires the analysis of large sample sizes to accurately estimate interindividual variability. However, the methods used to characterize and compare protein samples are generally expensive and time-consuming, which constrains the size of the produced data sets to few individuals. We developed a method that estimates the interindividual variability of protein quantities based on a global, semi-automatic analysis of 1D electrophoretic profiles, opening the way to rapid analysis and comparison of hundreds of individuals. The main original features of the method are the in silico normalization of sample protein quantities using pictures of electrophoresis gels at different staining levels, as well as a new method of analysis of electrophoretic profiles based on a median profile. We demonstrated that this method can accurately discriminate between species and between populations, based on interindividual variation in venom protein profiles from three endoparasitoid wasps of two different genera (Psyttalia concolor, Psyttalia lounsburyi and Leptopilina boulardi).

Modèles biologiques étudiés

  • Insectes envahissants : la chrysomèle du maïs Diabrotica virgifera, les cochenilles du genre Pseudococcus, pucerons, la coccinelle asiatique Harmonia axyridis, la mineuse de la tomate Tuta absoluta ;
  • Insectes introduits en tant qu’agents de lutte biologique : le parasitoïde Mastrus ridens, les parasitoïdes de cochenilles, les trichogrammes.

Modèles biologiques


Originalité scientifique de l’équipe

L'équipe aborde la problématique de la biologie de l'invasion de façon multidisciplinaire : génétique des populations, dynamique des populations, écologie comportementale.
L'originalité de l’équipe repose sur son approche expérimentale dans l’étude des processus invasifs. Des opérations de lutte biologique consistant à introduire des insectes exotiques sont utilisées comme modèle d'étude. A l'inverse, les résultats obtenus lors des recherches effectuées aideront à optimiser la lutte biologique.

Problématique actuelle

  • Quels sont les facteurs démographiques, génétiques et environnementaux qui déterminent les succès ou les échecs des invasions accidentelles (introduction d’un ravageur) ou planifiées (introduction et acclimatation d’un agent de lutte biologique) ?

Partenariat scientifique et soutien de programme

  • Collaborations nationales : CBGP Montpellier, UMR Bio3P Rennes, INA-PG, Université Lyon1, GAFL Avignon, CIRAD Montpellier, CEFE-CNRS Montpellier, Université Pierre et Marie Curie (Paris 6), Université d’Orsay (Paris 13), etc.
  • Collaborations internationales : CSIRO Australie, EBCL/USDA Montpellier, University of Iowa, Colorado State University - USA, etc.

La thématique de l’équipe est soutenue par différents programmes fédérateurs et appels d’offre (Départements Santé des Plantes et Environnement de l'Inra, Fondation pour la Biodiversité (FRB), ANR).