By browsing our site you accept the installation and use cookies on your computer. Know more

Menu Institut Sophia Agrobiotech Inra Logo transparent Univ. Nice Sophia Antipolis Logo transparent CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

PLOS ONE

02 January 2018

PLOS ONE
© PLOS
Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection

Abstract

Little is known about the responses of plant roots to filamentous pathogens, particularly to oomycetes. To assess the molecular dialog established between the host and the pathogen during early stages of infection, we investigated the overall changes in gene expression in Athaliana roots challenged with Pparasitica. We analyzed various infection stages, from penetration and establishment of the interaction to the switch from biotrophy to necrotrophy.

We identified 3390 genes for which expression was modulated during the infection. The Athaliana transcriptome displays a dynamic response to Pparasitica infection, from penetration onwards. Some genes were specifically coregulated during penetration and biotrophic growth of the pathogen. Many of these genes have functions relating to primary metabolism, plant growth, and defense responses. In addition, many genes encoding VQ motif-containing proteins were found to be upregulated in plant roots, early in infection. Inactivation of VQ29gene significantly increased susceptibility to Pparasitica during the late stages of infection. This finding suggests that the gene contributes to restricting oomycete development within plant tissues. Furthermore, the vq29 mutant phenotype was not associated with an impairment of plant defenses involving SA-, JA-, and ET-dependent signaling pathways, camalexin biosynthesis, or PTI signaling. Collectively, the data presented here thus show that infection triggers a specific genetic program in roots, beginning as soon as the pathogen penetrates the first cells.

Keywords

parasitic diseases , Arabidopsis thaliana , Gene expression , Plant defenses , Biosynthesis , Leaves , Pathogens , Microarrays

Le Berre, J.-Y., Gourgues, M., Samans, B., Keller, H., Panabières, F., and Attard, A. (2017). Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection. PLOS ONE 12, e0190341.

Site : View online >>