Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal LOGO GAFL Logo GAFL

Home page GAFL

Resistance to pests and pathogens, Diversity and Durability

ReDD

bandeau ReDD

Our socio-economical and scientific rationales

  • There is a primordial need to fight pests and pathogens to reduce the use of pesticide by genetic resistance and by improving its durability.
  • We work on models of strong agricultural –and Mediterranean- concerns, crops: tomato, pepper, melon, peach, and arabidopsis as a model.
  • We tackle resistance to a diverse set of pests and pathogens: viruses, oomycetes, aphids and study different resistance mechanisms to biotrophs (effector-triggered resistances, loss-of-susceptibility to pathogens, polygenic resistances).

Our objectives

  • Characterize the genetic and functional bases of resistance
  • Unravel the diversity of plant genetic resistance factors
  • Provide new alleles and new genetic combinations of loci to enlarge the resistance spectrum, level and durability
  • Predict the capability of pests and pathogens to adapt to plants by exploring their interactions

Our projects

Resistance to viruses by loss of susceptibility

REDD Virus

To successfully infect plants, viruses have to hijack host factors. Those can be turned into genetic resistances by making them unavailable to the pathogens.

We characterize plant susceptibility factors in plants and develop genetic resistances to viruses of agricultural importance.

  • by exploring the natural diversity of vegetable crops and wild related species and developing access to those wild species
  • by studying the interactions between plant and virus and deciphering resistance pathways mechanisms
  • by screening mutated populations or developing synthetic alleles using new biotechnological techniques

Relevant Publications

Bastet, A., Lederer, B., Giovinazzo, N., Arnoux, X., German-Retana, S., Reinbold, C., Brault, V., Garcia, D., Djennane, S., Gersch, S., Lemaire, O., Robaglia, C. and Gallois, J.-L. (2018) Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol. J. [link]

Bastet, A., Robaglia, C. and Gallois, J.L. (2017) eIF4E Resistance: Natural Variation Should Guide Gene Editing. Trends Plant Sci, 22, 411-419. [link]

Boualem, A., Dogimont, C. and Bendahmane, A. (2016) The battle for survival between viruses and their host plants. Curr Opin Virol, 17, 32-38. [link]

Gauffier, C., Lebaron, C., Moretti, A., Constant, C., Moquet, F., Bonnet, G., Caranta, C. and Gallois, J.L. (2016) A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. Plant J, 85, 717-729. [link]

Oomycètes

oomycetes

Oomycetes quickly overcome deployed plant genetic resistances, usually conferred by major resistance genes. Polygenic resistance with lower selective pressure and combining different geographical origins could slow down or hamper the pathogen’s ability to adapt to these combinations.

We identify and characterize plant quantitative factors in plants (tomato and pepper) and identify the aggressiveness factors in two of their oomycetes pathogens (Phytophthora infestans and P. capsici, respectively):

  • by exploring the natural diversity of vegetable crops and wild related species
  • by exploring the diversity within pathogens from cultivated and non-cultivated geographical areas
  • by studying the interactions between plant and oomycetes and deciphering partial resistance at the molecular level
  • by assessing robustness of these resistance to environmental changes (abiotic and biotic)
  • by developing new genotypes combining polygenic resistance alleles and challenging their efficiency to oomycetes

Relevant Publications

Caromel B, Hamers C, Touhami N, Renaudineau A, Bachellez A, Massire A, Damidaux R, Lefebvre V (2015). Screening tomato germplasm for resistance to late blight.  INNOHORT, Innovation in Integrated & Organic Horticulture. ISHS International Symposium, Avignon (France), 8-12 June 2015, pp 15-16

Mallard et al. (2013). A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: a valuable locus for pepper breeding. Mol Breeding 32(2):349-364

Nicolaï et al. (2013). Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet Resour Crop Ev 60:2375-2390

Thabuis et al. (2003). Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106(8):1473-1485

Genetic and functional bases of resistances to aphids

pucerons2

We characterize quantitative and qualitative resistances to aphids in the genetic diversity of peach (to the green peach aphid Myzus persicae) and melon (to Aphis gossypii) and we aims to develop durable resistances by studying their genetic and functional bases. We focus on qualitative resistances (R genes) that confer both resistance to aphids and to viruses that they transmit, in peach (Rm gene) and melon (Vat gene):

  • we characterize R genes and their homologs involved in the resistance (cloning and functional validation) and aphids effectors recognized by R genes. We study the resistance processes triggered by the recognition,
  • we assess the aphid adaptation to resistances (avoidance of recognition and adaptation to triggered processes). We aim to improve durability by modeling to define traits related to durability,  by identifying QTLs for these traits and ultimately, by combining R and QTL genes,
  • we develop biopesticides from secondary metabolites of peach involved in the resistance to the green peach aphid, which we found to be highly toxic to aphids

Relevant Publications

Schoeny, A., A. Desbiez, et al. (2017). Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Research 241: 105-115. [link]

Boissot, N., A. Schoeny, et al. (2016). Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects." Frontiers in Plant Science 7: 1420. [link]

Boissot, N., S. Thomas, et al. (2016). NBS-LRR-mediated resistance triggered by aphids: viruses do not adapt; aphids adapt via different mechanisms BMC Plant Biology 16: 25. [link]

Thomas, S., F. Vanlerberghe-Masutti, et al. (2016). Insight into the durability of aphid resistance from the demo-genetic study of Aphis gossypii populations in melon crops. Evolutionary Applications 9(6): 756-768. [link]

Dogimont, C., Chovelon, V., Pauquet, J., Boualem, A. and Bendahmane, A. (2014) The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J, 80, 993-1004. [link]