En naviguant sur notre site vous acceptez l'installation et l'utilisation des cookies sur votre ordinateur. En savoir +

Menu Institut Sophia Agrobiotech Inra - 70 ans - Votre avenir est notre culture Logo transparent Univ. Nice Sophia Antipolis Logo transparent CNRS

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs
400 route des chappes
BP 167
0690 Sophia Antipolis Cedex
Tel. : +33(0)4 92 38 64 00
Fax : + 33(0)4 92 38 64 01


Annals of Applied Biology

07 mars 2018

Annals of Applied Biology
© 2018 John Wiley & Sons, Inc.
Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario


Insecticide resistance is a standing concern for arthropod pest species, which may result in insecticide control failure. Nonetheless, while insecticide resistance has remained a focus of attention for decades, the incurring risk of insecticide control failure has been neglected. The recognition of both problems is paramount for arthropod pest management and particularly so when invasive species notoriously difficult to control and exhibiting frequent cases of insecticide resistance are considered. Such is the case of the putative whitefly species Middle East-Asia Minor I (MEAM1) (Bemisia tabaci B-biotype), for which little information is available in the Neotropics. Thus, the likely occurrence and levels of resistance to seven insecticides were surveyed among Brazilian populations of this species. The likelihood of control failure to the five insecticides registered for this species was also determined. Resistance was detected to all insecticides assessed reaching instances of high (i.e. >100×) to very high levels (>1000×) in all of them. Overall efficacy was particularly low (<60%) and the control failure likelihood was high (>25%) and frequent (70%) for the bioinsecticide azadirachtin, followed by spiromesifen and lambda-cyhalothrin. In contrast, the likelihood of control failure was low for diafenthiuron, and mainly imidacloprid. As cartap and chlorantraniliprole are not used against whiteflies, but are frequently applied on the same host plants, inadvertent selection probably took place leading to high levels of resistance, particularly for the latter. The resistance levels of cartap and chlorantraniliprole correlated with imidacloprid resistance (r > 0.65, P < 0.001), suggesting that the latter use may have somewhat favoured inadvertent selection for resistance to both compounds not used against the whitefly. A further concern is that chlorantraniliprole use in the reported scenario may allow cross selection to cyantraniliprole, a related diamide with recent registration against whiteflies demanding attention in designing resistance management programmes.

Dângelo, R. a. c., Michereff-Filho, M., Campos, M. r., da Silva, P. s., and Guedes, R. n. c. (2018). Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario. Ann Appl Biol 172, 88–99. DOI: 10.1111/aab.12404

Site : View online >>