En naviguant sur notre site vous acceptez l'installation et l'utilisation des cookies sur votre ordinateur. En savoir +

Menu Institut Sophia Agrobiotech Inra - 70 ans - Votre avenir est notre culture Univ. Nice Sophia Antipolis CNRS

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs
Inra PACA
400 route des chappes
BP 167
0690 Sophia Antipolis Cedex
FRANCE
Tel. : +33(0)4 92 38 64 00
Fax : + 33(0)4 92 38 64 01

http://www.paca.inra.fr/institut-sophia-agrobiotech

Molecular Plant-Microbe Interactions

12 juin 2018

Molecular Plant-Microbe Interactions
© The American Phytopathological Society
Imaging mass spectrometry of endogenous polypeptides and secondary metabolites from galls induced by root-knot nematodes in tomato roots

Abstract

Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation, mainly the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared to nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI-TOF-MS/MS and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.

Key words

galls, giant-cells, Meloidogyne, tomato roots, maldi imaging, mass spectrometry,phospholipid

Barbosa, E.A., Bonfim Junior, M.F., Bloch Jr., C., Rocha, T.L., Engler, G., and de Almeida Engler, J. (2018). Imaging mass spectrometry of endogenous polypeptides and secondary metabolites from galls induced by root-knot nematodes in tomato roots. MPMI. DOI: 10.1094/MPMI-02-18-0049-R

Site : View online >>