Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Inra Univ. Nice Sophia Antipolis CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

New Phytologist

23 January 2015

New Phytologist
© © 2015 New Phytologist Trust
Phenotyping nematode feeding sites: three-dimensional reconstruction and volumetric measurements of giant cells induced by root-knot nematodes in Arabidopsis

Summary

  • The control of plant parasitic nematodes is an increasing problem. A key process during the infection is the induction of specialized nourishing cells, called giant cells (GCs), in roots. Understanding the function of genes required for GC development is crucial to identify targets for new control strategies. We propose a standardized method for GC phenotyping in different plant genotypes, like those with modified genes essential for GC development.
  • The method combines images obtained by bright-field microscopy from the complete serial sectioning of galls with trakEM2, specialized three-dimensional (3D) reconstruction software for biological structures.
  • The volumes and shapes from 162 3D models of individual GCs induced by Meloidogyne javanica in Arabidopsis were analyzed for the first time along their life cycle. A high correlation between the combined volume of all GCs within a gall and the total area occupied by all the GCs in the section/s where they show maximum expansion, and a proof of concept from two Arabidopsis transgenic lines (J0121 ≫ DTA and J0121 ≫ GFP) demonstrate the reliability of the method.
  • We phenotyped GCs and developed a reliable simplified method based on a two-dimensional (2D) parameter for comparison of GCs from different Arabidopsis genotypes, which is also applicable to galls from different plant species and in different growing conditions, as thickness/transparency is not a restriction.

Keywords:

  • Arabidopsis;
  • giant cells (GCs);
  • phenotyping;
  • root-knot nematodes (RKN);
  • three-dimensional reconstruction

Cabrera, J., Díaz-Manzano, F.E., Barcala, M., Arganda-Carreras, I., de Almeida-Engler, J., Engler, G., Fenoll, C., and Escobar, C. (2015). Phenotyping nematode feeding sites: three-dimensional reconstruction and volumetric measurements of giant cells induced by root-knot nematodes in Arabidopsis. New Phytol. DOI: 10.1111/nph.13249

Site : View online >>