Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Inra Univ. Nice Sophia Antipolis CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

News and events

PhD position available under the joint supervision of the ESIM and Symbiosis teams

Advertisement :

PhD position available under the joint supervision of the ESIM and Symbiosis teams - Funding by the International SIGNALIFE PhD Programme (http://signalife.unice.fr/).

Project title : "Cross-talk between aphid facultative symbiosis and plant nitrogen fixation symbiosis in the Acyrthosiphon pisum - Medicago truncatula interaction" Aim : question how the plant nitrogen fixation symbiosis and the aphid facultative symbiosis interfere in terms of induced phenotypic effects, and modulate the interaction between the pea aphid and its legume host plant.
Programme opened to all students with a Master diploma equivalent.Appliance on *the web site* for a specific project (http://signalife.unice.fr/17.php).Dead-line : 1st of AprilCandidates, contact  M. Poirié (poirie@sophia.inra.fr) and/or P. Frendo (frendo@sophia.inra.fr) as soon as possible

Breakthroughs :

First demonstration of secretion of a superoxide dismutase in insects and possible role in parasitoids

Following identification of intracellular (SOD1) and extracellular (SOD3) Cu,Zn superoxide dismutase transcripts in the venom apparatus of twoLeptopilinaspecies, parasitoids ofDrosophila, we could demonstrate thatL. boulardiSOD3 (LbSOD3) is indeed secreted and active in venom. No SOD protein nor SOD activity were detected inL. heterotomavenom evidencing quantitative interspecific variation.Leptopilinarecombinant SOD3s as well as a mammalian SODin vitroinhibited theDrosophilaphenoloxidase activity in a dose-dependent manner, demonstrating that SODs may interfere with theDrosophilamelanization process and therefore with production of the host cytotoxic compounds. Phylogenetic analyses ofLeptopilinaSODs indicated that the extracellular SODs are more related to cytoplasmic vertebrate SODs than to extracellular ones. This work provided the first demonstration that insect extracellular SODs are indeed secreted and active in an insect fluid and can be used as virulence factors to counteract the host immune response, a strategy largely used by bacterial and fungal pathogens but also protozoan parasites during infection.

Parasitoid main venom components : similar function, yet different tools

A striking feature that emerges from the recent accumulation of data regarding parasitoid wasp venom content is the lack of predictable observation of common major components. Our recent results on Leptopilina figitid wasps perfectly illustrate this point. Thanks to a combined transcriptomic and proteomic approach, we have identified the main secreted proteins in the venom ofL. heterotomaand of two well-characterized strains ofL. boulardi, ISm and ISy.Results revealed significant quantitative differences in venom components between theL. boulardistrains, in agreement with their different virulence properties. Strikingly, the two relatedLeptopilinaspecies did not share any abundant venom protein. The main identified proteins inL. boulardiwere RhoGAPs and serpins while an aspartylglucosaminidase was found to be abundant inL. heterotoma, as it is in some Asobara species (braconid wasps). Altogether, our data suggest that parasitoid venom can quickly evolve, mainly through rapid changes in regulation of gene expression. They also evidence venom evolutionary processes largely described in other venomous animals, i.e. the convergent recruitment of venom proteins between phylogenetically unrelated organisms, and the role of duplications in the emergence of multigenic families of virulence factors.

First evidence of inter-individual variation in parasitoid venom and evolutionary consequences

Intriguingly, the question of the level of venom variability inside species has been largely neglected, although it may partly determine the potential for parasitoid adaptation. To estimate this parameter, we have developed an approach combining detection of protein electrophoretic patterns on a single venom reservoir content and analysis of these patterns with a dedicated software. This has allowed demonstrating occurrence of inter-individual variability, mostly quantitative, in figitid and braconid species, using both laboratory strains and field populations (publication in J. Insect Physiol.). Whether occurrence of such variability may permit a selection of parasitoid venom components is currently tested in collaboration with the BPI team using Psyttalia biological control auxiliaries. The aim is to assess whether rearing conditions, including the raise of parasitoids on a substitute host, may lead to changes in female venom components and possibly in parasitism success against the targeted host.

The presence of secondary symbionts affects the immune aphid phenotype

Aphids can host several secondary symbionts (SS) in addition to the primary endosymbiontBuchnera aphidicola. These SS have been previously shown to alter various aphid phenotypes, including body color, heat resistance, or resistance to pathogens or parasites. Having characterized the pea aphid hemocytes, and thanks to the availability of lines harboring each SS separately in the same genetic background, we were able to demonstrate that i) plasmatocytes and granulocytes can phagocyte all primary and secondary symbionts but some of these SS seem able to survive inside hemocytes,  ii) that the presence of some SS alters the number of these hemocytes as well as the phenoloxidase activity in the aphid hemolymph, iii) that this effect can be symbiont-strain dependant. Part of these results have been published in PLoS One, others will be submitted soon.

Sex-determination : a genetic basis common to bees, bumblebees and ants

Little is known regarding sex determination mechanisms in Hymenoptera. However, sl-CSD,  one of the main proposed mechanism could drive small populations into a vortex of extinction. Indeed, this mechanism relies on a single locus (namedcsd), only individuals heterozygous at this locus developing into females while homozygous individuals develop into diploid males of reduced fitness. Thecsdgene has been identified in the honeybee and was considered to be unique to the Apis lineage. Our results have demonstrated that i)csdis not restricted to the Apidae but is also present in bumblebees and ants genome, ii) csd originates from an ancestral duplication of thefemgene (key gene in sex determination) in the ancestor of the sub-orderAculeata,  iii) thefemandcsdgenes are one of the rare examples of concerted evolution based on gene conversion. These results, published inNature Communications,raise the question of the occurrence and possible role of thecsdgene in other Hymenoptera, notably in parasitoid wasps, largely used in biological control.