Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Inra Univ. Nice Sophia Antipolis CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs


CR Inra - Researcher

Suzanne.Touzeau AT

Suzanne.Touzeau AT


400 route des Chappes, BP167
06903 Sophia Antipolis Cedex, France

2004 route des Lucioles, BP 93
06902 Sophia Antipolis Cedex, France

Phone +33 (0)4 92 38 64 22
Room B102

Phone  +33 (0)4 97 15 53 70
Room B209

CVResearch    Teaching    Publications 


I received my PhD from Nice Sophia Antipolis University in March 1997, with a thesis on Control models in fisheries (in French) prepared in the COMORE team (currently BIOCORE), Inria Sophia Antipolis, France. It was followed by post-doctoral positions in the fisheries field at: Laboratoire MAERHA (currently EMH), IFREMER Nantes, France (1997); Systems Analysis Laboratory, Helsinki University of Technology, Finland (1997); Institut de Ciències del Mar, CSIC Barcelona, Spain (1998-1999).

In January 2000, I was recruited as a researcher at INRA (Applied Mathematics and Informatics division) in the MIA research unit (currently MaIAGE), Jouy-en-Josas, France. I started working on mathematical epidemiology applied to livestock and then directed my research towards crop epidemiology.

In November 2012, I joined the Sophia Agrobiotech Institute, M2P2 team, and the joint Inria-INRA-UPMC/CNRS BIOCORE research-team in Sophia Antipolis.

CV (Jan. 2018)pdf - 187.8 kB


Research interests

Development and analysis of mathematical models in population dynamics
  • Numerical exploration: parameter identification, sensitivity analysis, simulation
  • Mathematical analysis: parameter identifiability, order reduction, stability
Main applications in epidemiology
  • Crops: plant-pathogen/pest interactions; sustainable management of crop resistance
  • Livestock: host immune response to an infection, disease spread in herds
  • Design and assessment of control strategies

Research projects & networks

  • EPITAG EPIdemiological modelling and control for Tropical AGriculture. Associate team between Inria BIOCORE & Cameroon, 2017-2019 (Inria principal investigator)
  • MOGER From knowledge to modelling: towards a user-friendly simulation tool to test crop resistance management scenarios in the Phoma-oilseed rape case study. INRA, SMaCH Metaprogramme, 2017-2019 (co-leader)
  • ABCD Augmentative Biological Control -- optimizing natural enemies Deployment. INRA, SPE division, 2017-2019
  • ModStatSAP Modelling and stastistics in animal and crop health (in French). INRA research network, since 2011 (scientific committee)

Past projects

  • MIHMES Multi-scale modelling, from animal Intra-Host to Metapopulation, of mechanisms of pathogen spread to Evaluate control Strategies. ANR-Investissements d'avenir, action Bioinformatique, 2012-2017
  • K-MASSTEC Knowledge-driven design of MAnagement Strategies for STEm Canker specific resistance genes. INRA, SMaCH Metaprogramme, 2012-2016
  • GESTER Management of crop resistances to diseases in agricultural landscapes as a response to new constraints on pesticide use. ANR (French National Research Agency), programme AgroBiosphère, 2012-2016
  • SANCRE Animal health, food safety and competitiveness in regional animal production. PSDR-GO, 2008-2011
  • ACDUQ Collective action for the sustainable control of animal health: sanitary qualification in ruminant farming systems. ANR, programme ADD, 2005-2008
  • NeuroPrion. European Network of Excellence dedicated to research on prion diseases, 2004-2008
  • M3D Mathematics and decision for sustainable development (in French). RNSC & INRA research network, 2007-2013 (co-coordinator)

PhD students

Defended PhD theses


Lecturer at Polytech Nice-Sophia, Bioengineering specialty (4th year), since 2014: Data analysis (20 hours/year).

Research schools

  • Lecturer at the CIMPA-CAMEROUN-CETIC - Mathematical and computer models in epidemiology, ecology and agronomy research school, Yaoundé, Cameroon, 2016.
  • Organisation of the EpiCasa - Introduction to epidemiology: mathematical and statistical models and methods research schools (in French), Casablanca, Morocco: 2007, 2010 & 2012.

Selected publications

  • N. Go, S. Touzeau, Z. Islam, C. Belloc, A. Doeschl-Wilson. How to prevent viremia rebound? Evidence from a PRRSv data-supported model of immune response. BMC Syst. Biol., 13:15, 2019. doi:10.1186/s12918-018-0666-7
  • C. Bresch, L. Carlesso, R. Suay, L. Van Oudenhove, S. Touzeau, H. Fatnassi, L. Ottenwaelder, B. Paris, C. Poncet, L. Mailleret, G. J. Messelink, P. Parolin. In search of artificial domatia for predatory mites. Biocontrol Science and Technology, 2018, in press. doi:10.1080/09583157.2018.1540030
  • N. Go, C. Bidot, C. Belloc, S. Touzeau. Why, when and how should exposure be considered at the within-host scale? A modelling contribution to PRRSv infection. Math. Med. Biol., 2018, in press. doi:10.1093/imammb/dqy005
  • S. Casagranda, S. Touzeau, D. Ropers, J.-L. Gouzé. Principal process analysis of biological model. BMC Syst. Biol., 12:68, 2018. doi:10.1186/s12918-018-0586-6
  • T. Hoch, S. Touzeau, A.-F. Viet, P. Ezanno. Between-group pathogen transmission: from processes to modelling. Ecol. Model., 383:138-149, 2018. doi:10.1016/j.ecolmodel.2018.05.016
  • S. Nilusmas, M. Mercat, T. Perrot, S. Touzeau, V. Calcagno, C. Djian Caporalino, P. Castagnone-Sereno, L. Mailleret. A multi-seasonal model of plant-nematode interactions and its use to identify durable plant resistance deployment strategies. Acta Hortic., 1182:211-218, 2017. doi:10.17660/ActaHortic.2017.1182.25
  • J. Ferrer Savall, C. Bidot, M. Leblanc-Maridor, C. Belloc, S. Touzeau. Modelling Salmonella transmission in pigs from farm to slaughter house: interplay between logistic diversity and epidemiological uncertainty. Int. J. Food Microbiol., 229:33-43, 2016. doi:10.1016/j.ijfoodmicro.2016.03.02
  • N. Go, C. Bidot, C. Belloc, S. Touzeau. Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? Plos ONE, 9(9):e107818, 2014. doi:10.1371/journal.pone.0107818
  • J. Papaïx, S. Touzeau, C. Lannou, H. Monod. Can epidemic control be achieved by altering landscape connectivity in agricultural systems? Ecol. Model., 284:35-47, 2014. doi:10.1016/j.ecolmodel.2014.04.014
  • J. Papaïx, K. Adamczyk-Chauvat, A. Bouvier, K. Kiêu, S. Touzeau, C. Lannou, H. Monod. Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework. Infect. Genet. Evol., 27:509-520, 2014. doi:10.1016/j.meegid.2014.01.022
  • A. Lurette, S. Touzeau, P. Ezanno, T. Hoch, C. Fourichon, H. Seegers, C. Belloc. Within-herd biosecurity and Salmonella seroprevalence in slaughter pigs: a simulation study. J. Anim. Sci., 89(7):2210-2219, 2011. doi:10.2527/jas.2010-2916
  • A. Perasso, B. Laroche, Y. Chitour, S. Touzeau. Identifiability analysis of an epidemiological model in a structured population. J. Math. Anal. Appl., 374(1):154-165, 2011. doi:10.1016/j.jmaa.2010.08.072
  • S. Gubbins, S. Touzeau, T. J. Hagenaars. The role of mathematical modelling in understanding the epidemiology and control of sheep transmissible spongiform encephalopathies: a review. Vet. Res., 41(4):42, 2010. doi:10.1051/vetres/2010014
  • A. Lurette, S. Touzeau, M. Lamboni, H. Monod. Sensitivity analysis to identify key parameters influencing salmonella infection dynamics in a pig batch. J. Theor. Biol., 258(1):43-52, 2009. doi:10.1016/j.jtbi.2009.01.026
  • S. Gaucel, B. Laroche, P. Ezanno, E. Vergu, S. Touzeau. Using singular perturbations to reduce an epidemiological model: application to bovine viral diarrhoea virus within-herd spread. J. Theor. Biol., 258(3):426-436, 2009. doi:10.1016/j.jtbi.2008.08.011
  • A. Lurette, C. Belloc, S. Touzeau, T. Hoch, H. Seegers, C. Fourichon. Modelling batch farrowing management within a farrow-to-finish pig herd: influence of management on contact structure and pig delivery to the slaughterhouse. Animal, 2(1): 105-116, 2008. doi:10.1017/S1751731107000997
  • A. Lurette, C. Belloc, S. Touzeau, T. Hoch, P. Ezanno, H. Seegers, C. Fourichon. Modelling Salmonella spread within a farrow-to-finish pig herd. Vet. Res., 39(5):49, 2008. doi:10.1051/vetres:2008026
  • B. Schaeffer, B. Mondet, S. Touzeau. Using a climate dependent matrix model to predict mosquito abundance: application to Aedes (Stegomyia) africanus and Aedes (Diceromyia) furcifer (Diptera: Culicidae). Infect. Genet. Evol., 8(4):422-432, 2008. doi:10.1016/j.meegid.2007.07.002
  • N. Ziyadi, S. Boulite, M. L. Hbid, S. Touzeau. Mathematical analysis of a PDE epidemiological model applied to scrapie transmission. Comm. Pure Appl. Anal., 7(3):659-675, 2008. doi:10.3934/cpaa.2008.7.659
  • S. Touzeau, M. E. Chase-Topping, L. Matthews, D. Lajous, F. Eychenne, N. Hunter, J. D. Foster, G. Simm, J.-M. Elsen, M. E. J. Woolhouse. Modelling the spread of scrapie in a sheep flock: evidence for increased transmission during lambing seasons. Arch. Virol., 151(4):735-751, 2006. doi:10.1007/s00705-005-0666-y
  • M. E. Chase-Topping, L. E. B. Kruuk, D. Lajous, S. Touzeau, L. Matthews, G. Simm, J. D. Foster, R. Rupp, F. Eychenne, N. Hunter, J.-M. Elsen, M. E. J. Woolhouse. Genotype-level variation in lifetime breeding success, litter size and survival of sheep in scrapie affected flocks. J. Gen. Virol., 86(4):1229-1238, 2005. doi:10.1099/vir.0.80277-0
  • B. Laroche, S. Touzeau. Parameter identification for a PDE model representing scrapie transmission in a sheep flock. In 44th IEEE Conference on Decision and Control and European Control Conference (Sevilla, Spain), 2005, pp. 1607-1612. Regular paper. doi:10.1109/CDC.2005.1582388